Domain-Theory Case-Study based on Deep-Space One
Automatic Software Code Generator
Deliverable A2
Nicolas F. Rouquette

1 DS1 Background

The domain modeling of monitor telemetry is a particularly interesting case of where modeling
assumptions were made early in the project about the relevant information necessary to specify each
monitor telemetry measurement. We had initially concentrated on modeling the functionality necessary to
fulfill the basic fault-protection requirements. Later, when the telemetry issue was re-visited, we found that
additional modeling information had to be specified in order to fully characterize what kind of telemetry to
produce and when. We use this case to show illustrate how we built the domain-theory case study for DSL1.

2 Basic Descriptions of Monitors

The initial modeling of monitors focused on capturing the basic functionality. For monitors, this meant
defining the set of parameters and variables needed in the computation of the monitor. Here is an example
of how parameters are defined:

begi n paraneters

doubl e delta_x = 0. 005;
/1 (32bit floating point: range=[0.0; 100.0]) amount of paddi ng added to
the x-axi s ACS deadbands to cal culate the m n/max threshold bounds for
the F conponent of error(x) & error rate(x)

doubl e tolerated tinme = 3.0
/1 (32bit floating point: range=[0.0; 10000.0]) Tolerated tinme outside
deadbands. This inplies slope of g axis.

int transition_tine = 60
/1 (32bit signed integer: range=[0;27"30]) Delay tinme used to tenmporarily
di sabl e the control error nonitor when ACS changes the deadbands

int confidence = 5;
/1 (32bit signed integer: range=[0; 2*30]) m ni mum nunber of cycles of data
within mn/max range to define a "green" threshold state
int persistence = 3;
/1 (32bit signed integer: range=[0; 2*30]) m ni mum nunber of cycles of data
outside mn/max range to define a "red" threshold state
int decay = 5;
/1 (32bit signed integer: range=[0; 2*30]) mi ni mum nunber of cycles of no-
data to reinitialize the threshold tracking logic
end paraneters

Hereis an example of monitor variables (they were called "dlements’ for historical reasons):

begin el ements
int delay = nopn_control _error_nopn_object.parns.transition_tine;
/1 (32bit signed integer) count of 'done' ticks remmining before enabling
the nonitor

/* zero will force quick alarns if not changed by acs */
doubl e deadband_x = 0.0; :no-reinit
/1 (32bit floating point) current deadband on x axis (takes account any
applicabl e tightening del ay)

A6uble error_x = 0.0
/1 (32bit floating point) current error for x axis

doubl e error_rate x = 0.0
/1 (32bit floating point) current error rate for x axis

end el enents

The domain specification language includes the notion of a component to define a chunk of general-
purpose functionality into a reusable unit. The following example shows how a threshold component is
instantiated in the control-error monitor to detect when the component input becomes persistently too large
(i.e., above the maximum of deadband_x + del t a_x) or too small (i.e., above the minimum of: -
deadband_x - del ta_x):

begi n conponents
nmon_t hreshol d_conponent f_x(-(deadband_x+delta_x), deadband_x+delta_x, confidence
persi stence, decay);
/1 f component of the phase plane defined by: error(x), rate_error(x)

end conponents

The declarative nature of such descriptionsis of fundamental importance for decoupling the code
generation machinery (domain-independent knowledge) from the domain-specific knowledge of a
particular monitor design and requirements. However, the specification language shown above through
examples has afair amount of implicit knowledge attached to it. While directives such asbegi n and end
can be reasonably attributed to the notion of grouping declarations into a unit, other directives are much
moretied to the particular application (e.g., par anet er, vari abl e, doubl e, updat es,...) because the code
generator uses them to define atemplate language for referring to any attribute of a specification. For
example, hereis a excerpt of the template used to define the C data structure that holds the run-time data of
amonitor:

typedef struct {
#forall elenments
/* @xel enent_description> */
@el enent _type> @el ement _nane>;
#end el ements
#forall conponents
/* @cconponent _description> */
@conponent _type>_struct _t @conponent_nane>@conponent _di np;
#end conponents
} $<name>_dynamic_state_t;

In the example of the control-error monitor, the above template produces the following code:
typedef struct
/* (iZbit signed integer) count of 'done' ticks remining before enabling the nonitor
i nt délay;
/* (32bit floating point) current deadband on x axis (takes account any applicable
tightening delay) */

doubl e deadband_x;

/* (32bit floating point) current error for x axis */
doubl e error_x

/* (32bit floating point) current error rate for x axis */
doubl e error_rate_x;

/* f conponent of the phase plane defined by: error(x),
rate_error(x) */
nmon_t hr eshol d_conponent _struct _t f_x;

} non_control _error_nmon_dynam c_state_t

This type of code-generation technology is based on a smple text substitution mechanism. In the above
example, the keyword: @el enent _nane> is replaced by the names of the current element. The notion of the

current element is controlled by the context of the #forall elements ... #end elementsloop which iterates
over each dement of the current monitor. In this case, the notion of the current monitor context is
controlled by the fact that the template is applied to the control-error monitor specification.
Text-substitution mechanisms have some limitations, some of which are more difficult to anticipate than
others as was the case for the monitor telemetry in DS1.

3 Limitations of Text-Substitution for Code Generation

In DS1, the modeling of monitor telemetry was not a high priority task and was consequently postponed
until the basic monitor functionality was properly generated. The priority was justified on the basis that
designing the core monitor functionality for processing arbitrary data inputs and for detecting arbitrary
signatures of anomaly symptoms was much more complex than the passive role telemetry has with respect
to providing ground visibility to the monitor internal variables. However, additional requirementswere
introduced: because the spacecraft will spend alot of time without ground visibility, summarizing behavior
with water marks and statistical measures became much more important. Thisimplied adding to the
monitor dynamic state enough variables to compute the behavior summarization and update the telemetry
gatigtics.

The following example shows how telemetry statistics and water marks were added to the control error
monitor specification. Thefirst specification clause declares that state statistics will be computed for the
current state of the'f_x' component and its possible values. The second clause declares that the local
maxima of the input of the threshold component 'f_x" will be tracked when the input value will be within
the min/max values.

begin telemetry
F X STATE: STATE(f _x.current_state.vars. state, non_threshol d_states);

F_X THRESHOLD: HI GH _MARK(\
f_X.current_state.vars.input, \
(f_x.current_state.parms. Max> f _x.current _state.vars.input && \
f_X.current_state.vars.input >f_x.current_state.parns.Mn), \
f_X.current_state. parns. M n)

end telenetry

The actual definition of the F_X_STATE telemetry and associated variables necessary to compute it
depends on the number of different statesthat f _x. current _state. vars. state can have. This
information can be easily obtained from the public interface header files where the following definition of
mon_t hreshol d_st at es can be found:

typedef enum {
t hr Unknown,
t hr Low,
t hr MaybelLow,
t hr Nom nal ,
t hr MaybeNomi nal ,
t hr Hi gh,
t hr MaybeH gh
} non_t hreshol d_st at es;

The code generator uses thisinformation to calculate, for example, how many bits are necessary to
calculate the statistics of how frequently each state occurs and how often state changes occur. This
mechanism cannot be cleanly described in terms of a simple syntactic replacement rule. Indeed, the DS1
template is succinct because the expansion hides al of theinternal processing necessary to perform type
information lookup and subsequent processing:

typedef struct {

#forall elenents
/* Telemetry for elenent: @el ement_nane> */
@decl are_t el enetry(@el ement _nane>) >;

#end el ements

#forall conponents

/* Telemetry for conponent: @conponent_nanme> */
@decl are_t el emetry(@conponent _nane>) >;

#end conponents

} $<name>_tel enetry

... but the expansion of thistemplate illustrates that the code-generation is much more complex than
piecing together a few text fields:

typedef struct

{

/* Telemetry for conponent: f_x */
nmon_state_t F_X STATE previous_state;

mon_l ength_t F_X_STATE_ epi sode_| engt h;

mon_l ength_t F_X_STATE epi sode_hi story[7];
mon_l ength_t F_X_STATE cunul ative_history[7];

int F_X THRESHOLD_hi gh_nmark_st at e;

doubl e F_X_ THRESHOLD hi gh_mar k_current;
doubl e F_X_ THRESHOLD hi gh_mar k_achi eved;
int F_X THRESHOLD_ | ow_mar k_st at e;

doubl e F_X THRESHOLD | ow_mar k_current;
doubl e F_X_ THRESHOLD | ow_nar k_achi eved;

} non_control _error_non_tel emetry;

The keyword: @decl are_t el enet ry> hidesalot of code-generation work. While this would be
acceptableif it were an isolated instance, it raises more concerns when other code-generation mechanisms
for related purposes need to hide a similarly complex logic. The keyword: @add_t el enet ry> iSone such
example where for the same telemetry definition, the generated code becomes:

nmon_cal cul ate_state_eha
(MON_CONTROL_ERROR_MON_EHA_F_X_STATE,
(unsi gned char)

nmon_control _error_non_obj ect.functional _state.f_x.current_state.vars. state,

&mon_control _error_non_obj ect.tel emetry_state. F_X STATE previ ous_state,
MON_CONTROL_ERROR_MON_EHA_F_X_ STATE_EPI SODI C_SUMVARY,
&mon_control _error_non_obj ect.tel emetry_state. F_X STATE epi sode_I engt h,
MON_CONTROL_ERROR_MON_EHA_F_X_ STATE_EPI SODI C_HI STORY,
&mon_control _error_non_obj ect.tel emetry_state. F_X_STATE epi sode_hi story[0],
MON_CONTROL_ERROR_MON_EHA_F_X_STATE_CUMULATI VE_HI STORY,
&mon_control _error_non_obj ect.tel emetry_state. F_X STATE cunul ati ve_history[0]);

and:

nmon_cal cul at e_hi gh_mar k_eha
(mon_control _error_non_obj ect. functional _state.f_x.current_state. parns. Max >
nmon_control _error_non_obj ect.functional _state.f_x.current_state.vars.input &&
mon_control _error_non_obj ect. functional _state.f_x.current_state.vars.input >
nmon_control _error_non_obj ect.functional _state.f_x.current_state.parns. M n,
nmon_control _error_non_obj ect.functional _state.f_x.current_state.vars.input,
&mon_control _error_non_object.tel enetry_state. F_X THRESHOLD hi gh_mark_state,
&mon_control _error_nmon_object.tel enetry_state. F_X THRESHOLD hi gh_mark_current,
&mon_control _error_nmon_object.telenetry_state. F_X THRESHOLD hi gh_mar k_achi eved,
MON_CONTROL_ERROR_MON_EHA_HI GH WATER_MARK_OF_F_X_THRESHOLD) ;

4 The Domain-Theory Approach

The key technical advance we are pursuing to address the problems illustrated above consistsin storing
domain-specific knowledge into a database. This knowledge can be separated in two categories: 1) the
design specifications of what to build (e.g., the control-error monitor specification of § Sec. 2 and § Sec. 3)
and 2) the nature and type information about software entitiesin the domain (e.g., the type information
about mon_t hreshol d_st at es.)

5 Models of Design Information

To construct the database of design information, we need to first define a database schema. Such a schema
isamode in Rational Rose where each unit of information relevant for the purpose of writing a domain-
specific software specification will be explicitly mapped into a database table. The class diagram showing
the different concepts relevant to specifying a monitor in the DS1 domain is partially shown below:

e, ——— E——
[Mo ﬂ
e S sking
Peee - thinp —

E . nehids_depeandeneiae : ehing e as
B “Hife
= s
S e o - T
| | wnitvarane | / 0. eosthan
T—H ia-llim? siring | +Eompnenis SR | + gatal owEsts
| | | Srtermb e mring |00 [y R T — ¢
_|:, | died e rigghicen - wineg 2 n Flowi:har | | datsiowEd |
s ;-.'Ipu:huns =Hing __.::u;u'r-n_n_&_ ! ey Rty Shir)s | ol Bevkomchmy) |
ofl|| | l_c;;rsm'—" o LT s . L5 R
= el _depardencies : shing ‘ | | 1 |
e EER N ?I 1 T' !

= | |
;t ‘I 1 i o P, nw:.di:auEwr\lq, * G D L D 4 O
= AWERE iR ! e U .
ol { ExjarralEwaniz %
I 5 Pt L N 1 v ol Aramak Symakm
 ompanentiaiabie | Paaimaar e - sin g Erame : sking
e - ehring |ﬂ:\mp shing oo
b U_vad i - ki |bataan_valua : s¥ing LY s
srpron : sking |Bprteserimion - sking % 4
== vundimBehaim Rt
! k y /
i) S VI (F
) In,mmw;..mp l.os *updadialariabies .| MondoFuneions | 17
= -
——— L e 1.1 |r;,1 =
WL Bz S T I .
| 5 o 'dm___enuenrle-._ ™,
=T P e [i '\ 0 /! -
varishia | [ey - ! *
| Emsiariatae | | oistepionang !,E T 1 %1 Dz eaparaiiais TS
= ﬁ i === | _i—— @_ﬁuni | 5
I v b . 2 — | — r— [Funchorsmgument
| T ¥ ! aege | I Wostng |
| L 1% N e e e e S b T sling
0 [; e |Etme - st
i ik | . f, i I_—

L. Ry |
T

k.

.-m.mn-.-anlaum +alrbucF ool +contenls

o

i

This diagram captures the relationships there exists amongst the various parts of a monitor specification
file. For the example of § sec. 2, 'control-error' is an instance of a monitor specification which includes a
parameter specification with the following properties: name=' del t a_x', default_value=' 0. 005',

description='(32bit floating point: range=[0.0;100.0]) anount of padding added to the x-axis
ACS deadbands to cal culate the m n/nmax threshold bounds for the F conponent of error(x) &

error rate(x)"'. Each entity specified in 8§ sec. 2 mapsto an instance of a specification class in the above
diagram.

The specification diagram also includes additional classes such as 'DynamicVariable and
'‘QuantityVariable. Such classes introduce an abstraction of the specification classes to enable other
specification relationships to be described more precisely. For example, the specification class for
‘MonitorFunction' has an ‘updatedV ariables aggregate relationship with 'DynamicVariabl€ to indicate that
among all 'QuantityVariables, only the 'DynamicVariables can be updated by a monitor function while that
function can refer to and therefore depend on any ‘QuantityVariable' defined in the specification.

A number of constraints can be defined to define a declarative criteria of validity for specifications. The
previous example shows a simple membership constraint that is easily represented in the Rose modd . For
complex validity constraints, a visual representation can be more confusing than atextual description in a
formal language. For such cases, the validity constraints on the specification mode have to be captured
outside the Rose model (thisisaknown issue to be addressed.)

A similar diagram exists to describe the design information necessary for specifying fault-protection
responses.

Py mmay vy r gw

TR - |

I"%".fﬂ"‘"' +iE e EE iy E"':"""‘E“E"l‘-' 11

Pepna e . Elring o, ST SR R <H 0 B0

 E— ‘ 1.1 frame : simg |
1

0
HnggeradFautl Harosa e el Eva s

a1 | t .
kit Redponss | PO T ST
_.Fiul J HrigpaiCiond s | Stasichan
______ mmp . =inng -+l abachoft by statwiiows chann
[Bename slmgl"i"—'-'-‘ rbamglireg : boolean [l

s le Lalolminlafmb o= ?I'E

-1 0 n* i\‘pmmg-j Tppe = vl [1.1 1 |r§ﬂamr stng
_"1 1 LR
Py -5
.)’ .\
v il \ Aparamelers
s '\.\
_'. u 3 1[' -
__________ K — 4
s s v e sl Pammetar
Eename - un idw i Moot
Bty e 5|m|r_-|\.‘:I Spnami : sirng
Bpirilialvale simg Spefal_sakie 5iring
Sed s rription . eiring

Rational Rose generates automatically from such diagrams SQL database schemas with which we can
create a specification database for recording all instances of the fault-protection monitors and response
designsin the domain. The delivery A3 will describe the full model of fault protection and the delivery A4
will describe how these kinds of domain theory models are used in a database-driven code-generation.

6 Contributors for this deliverable

Nicolas Rouquette
Julia Dunphy

